

GIET POLYTECHNIC, JAGATPUR,

CUTTACK

LESSON PLAN

Discipline: ELECTRICAL	Semester:5"	Name Of The Teaching Faculty: DWITIKRUSHNA BEHERA
Subject: EC-II (Th2)	No. Of Days Per Week Class Allotted: 5P	Semester From Date: 01.07.2024 To Date: 08.11.2024 No.ofweeks:15
Week	Class Day	Theory Topic
	1 _{st}	ALTERNATOR: Types of alternator and their constructional features.
***************************************	2 _{nd}	 Basic working principle of alternator and the relation between speed and frequency.
1ºweek	3 _{rd}	Terminology in armature winding and expressions for winding factors(Pitch factor, Distribution factor).
	4 th	1.4. Explain harmonics, its causes and impact on winding factor.
	1,1	1.4. Explain harmonics, its causes and impact on winding factor.
200000000	2 _{nd}	1.5. E.M.F equation of alternator. (Solve numerical problems).
2º/week	3 _{rd}	1.5. E.M.F equation of alternator. (Solve numerical problems).
	4 th	Explain Armature reaction and its effect on emf at different power factor of load.
	1.,	1.7. The vector diagram of loaded alternator. (Solve numerical problems)
3 week	#50	1.8. Testing of alternator (Solve numerical problems)
	2 _{nd}	1.8.1. Open circuit test.
	100	1.8.2. Short circuit test.
	3 _{rd} 4°	Determination of voltage regulation of Alternator by direct loading and synchronous impedance method. (Solve numerical problems)
	1 _{st}	Determination of voltage regulation of Alternator by direct loading and Synchronous impedance method. (Solve numerical problems)
4" week	2 _{nd}	1.10. Parallel operation of alternator using synchro-scope and dark &Brightlamp method.
	3 _{rd}	1.11. Explain distribution of load by parallel connected alternators.
	40	CLASS TEST
	1 _{st}	SYNCHRONOUS MOTOR: Constructional feature of Synchronous Motor. Principles of operation, concept of load angle
5°week	2 _{nd}	2.2 Principles of operation, concept of load angle
	3 _{rd}	2.3. Derive torque, power developed.
	4 ⁿ	Effect of varying load with constant excitation. Effect of varying excitation with constant load.
	1 _{st}	 Explain effect of excitation on Armature current and power factor.
6°week	Z _{nd}	Hunting in Synchronous Motor. Synchronous Motor and generator.
	3 _{rd}	2.10. Describe method of starting of Synchronous motor.
	Jrd.	2.11. State application of synchronous motor.

	1 _{st}	THREE PHASE INDUCTION MOTOR: 3.1. Production of rotating magnetic field.
7"week	2 _{nd}	3.2. Constructional feature of Squirrel cage and Slip ring induction motors.
	4-nd	
	3 _{rd}	3.3. Working principles of operation of 3-phase Induction motor.
	44	3.4. Define fine slip speed, slip and establish the relation of slip withrotor quantities.
		3.5. Derive expression for torque during starting and
	1 _{st}	running conditions andderive conditions for maximum
		torque. (solve numerical problems)
	22.0	3.6. Torque-slip characteristics.
8°week	2 rd	3.7. Derive relation between full load torque and
	3 rd	starting torque etc.(solve numerical problems)
	8000	Establish the relations between Rotor Copper loss, Rotor
	4 th	output andGross Torque and relationship of slip with rotor copper loss. (solve numerical problems)
		3.9. Methods of starting and different types of
	1 _{st}	starters used forthree phase Induction motor.
9"week		3.10. Explain speed control by Voltage Control, Rotor
	2 _{nd}	resistance control, Pole changing, frequency control methods.
	3 _{rd}	3.10. Explain speed control by Voltage Control, Rotor resistance control, Pole changing, frequency control
		methods.
	-	3.11. Plugging as applicable to three phase induction motor.
	40	3.12. Describe different types of motor enclosures.
	1 _{st}	3.13. Explain principle of Induction Generator and state its applications.
10°week	2 _{nd}	3.13. Explain principle of induction designator and state to approximate
10 Week	-10	A. SINGLE PHASE INDUCTION MOTOR:
744	3 _{rd}	SINGLE PHASE INDUCTION MOTOR: A.1. Introduction and Explain Ferrari's principle.
-	***	4.2. Explain double revolving field theory and
	4"	Cross-field theory to analyze starting torque of 1-
		phase induction motor.
	1 _{st}	4.2. Explain double revolving field theory and Cross-field theory to analyze starting torque of 1-phase induction motor.
11ºweek	1.0	4.3. Explain Working principle, Torque speed
TT Acce	2 _{nd}	characteristics, performancecharacteristics and
		application of following single phase motors. 4.3.1. Split phase motor.
		4.3.2. Capacitor Start motor.
	3 _{rd}	4.3.3. Capacitor start, capacitor run motor.
	4n	4.3.4. Permanent capacitor type motor.
		4.3.5. Shaded pole motor. 4.4. Explain the method to change the direction of rotation of above motors.
	1st	
12"week	2 _{nd}	4.4. Explain the method to change the direction of rotation of above motors.
	3 _{rd}	5. COMMUTATOR MOTORS:
	310	 Construction, working principle, running characteristic and application of singlephase series motor.
- 1000	4th	5.1. Construction, working principle, running
		characteristic and application of single phase series
		motor.

13th Week	1 _{st}	5.2. Construction, working principle and application of Universal motors.
	2 _{nd}	5.2. Construction, working principle and application of Universal motors.
	3 _{rd}	5.3. Working principle of Repulsion start Motor, Repulsion start Inductionrun motor, Repulsion Induction motor.
	4n	Working principle of Repulsion start Motor, Repulsion start Inductionrun motor, Repulsion Induction motor.
	1 _{st}	SPECIAL ELECTRICAL MACHINE: 6.1. Principle of Stepper motor. 6.2. Classification of Stepper motor.
4ºweek	2 _{nd}	6.3. Principle of variable reluctant stepper motor.
	3 _{rd}	6.4. Principle of Permanent magnet stepper motor.
	40	6.5. Principle of hybrid stepper motor.
172	1 _{st}	7. THREE PHASE TRANSFORMERS: 7.1. Explain Grouping of winding, Advantages.
Enwark	2 _{nd}	 7.2. Explain parallel operation of the three phase transformers.
5*week	3 _{rd}	7.2. Explain parallel operation of the three phase transformers.
	40	7.3. Explain tap changer (On/Off load tap changing)

Distriction Polyno 124 SIGN OF FACULTY SIGN OF SR. LECT.

SIGN OF PRINCIPAL